Spontaneous Autoimmune Diabetes in Monoclonal T Cell Nonobese Diabetic Mice

نویسندگان

  • Joan Verdaguer
  • Dennis Schmidt
  • Abdelaziz Amrani
  • Brad Anderson
  • Nuzhat Averill
  • Pere Santamaria
چکیده

It has been established that insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice results from a CD4+ and CD8+ T cell-dependent autoimmune process directed against the pancreatic beta cells. The precise roles that beta cell-reactive CD8+ and CD4+ T cells play in the disease process, however, remain ill defined. Here we have investigated whether naive beta cell-specific CD8+ and CD4+ T cells can spontaneously accumulate in pancreatic islets, differentiate into effector cells, and destroy beta cells in the absence of other T cell specificities. This was done by introducing Kd- or I-Ag7-restricted beta cell-specific T cell receptor (TCR) transgenes that are highly diabetogenic in NOD mice (8.3- and 4.1-TCR, respectively), into recombination-activating gene (RAG)-2-deficient NOD mice, which cannot rearrange endogenous TCR genes and thus bear monoclonal TCR repertoires. We show that while RAG-2(-/-) 4.1-NOD mice, which only bear beta cell-specific CD4+ T cells, develop diabetes as early and as frequently as RAG-2+ 4.1-NOD mice, RAG-2(-/-) 8.3-NOD mice, which only bear beta cell-specific CD8+ T cells, develop diabetes less frequently and significantly later than RAG-2(+) 8.3-NOD mice. The monoclonal CD8+ T cells of RAG-2(-/-) 8.3-NOD mice mature properly, proliferate vigorously in response to antigenic stimulation in vitro, and can differentiate into beta cell-cytotoxic T cells in vivo, but do not efficiently accumulate in islets in the absence of a CD4+ T cell-derived signal, which can be provided by splenic CD4+ T cells from nontransgenic NOD mice. These results demonstrate that naive beta cell- specific CD8+ and CD4+ T cells can trigger diabetes in the absence of other T or B cell specificities, but suggest that efficient recruitment of naive diabetogenic beta cell-reactive CD8+ T cells to islets requires the assistance of beta cell-reactive CD4+ T cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perforin-independent beta-cell destruction by diabetogenic CD8(+) T lymphocytes in transgenic nonobese diabetic mice.

Autoimmune diabetes in nonobese diabetic (NOD) mice results from destruction of pancreatic beta cells by T lymphocytes. It is believed that CD8(+) cytotoxic T lymphocytes (CTLs) effect the initial beta-cell insult in diabetes, but the mechanisms remain unclear. Studies of NOD.lpr mice have suggested that disease initiation is a Fas-dependent process, yet perforin-deficient NOD mice rarely devel...

متن کامل

Cytokines and beta-cell destruction

Several genetic and environmental factors appear to cooperate to precipitate type1 diabetes, a spontaneous autoimmune disease in humans and in the nonobese diabetic (NOD) mouse. NOD mice, like type1 diabetic patients, develop insulitis, an early infiltration of leukocytes into the pancreas that leads to inflammatory lesions within the islets. However, overt type1 diabetes requires the subsequen...

متن کامل

Defective CD8+ T cell peripheral tolerance in nonobese diabetic mice.

Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have as...

متن کامل

Protection from autoimmune diabetes and T-cell lymphoproliferation induced by FasL mutation are differentially regulated and can be uncoupled pharmacologically.

Spontaneous mutation of Fas (lpr) or FasL (gld) completely protects nonobese diabetic mice from autoimmune diabetes but also causes massive double-negative T-cell lymphoproliferation. In this study, we used bone marrow chimeras and adoptive transfer analysis to investigate further the role of FasL in the pathogenesis of autoimmune diabetes and to determine whether gld-induced tolerance and doub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 186  شماره 

صفحات  -

تاریخ انتشار 1997